Научная группа: Лаборатория исследования квазикристалов и фотоэлектронной спектроскопии

 


Область деятельности
Физика твердого тела

Научные интересы
квазикристаллы
композиты
порошки
тонкие пленки
физика твердого тела
фотоэлектронная спектроскопия Научный коллектив
Михеева Маргарита Николаевна, начальник лаборатории, без ученого звания, кандидат наук
Шайтура Дмитрий Сергеевич, м.н.с., без ученого звания, без ученой степени

Описание группы

Достижения ЛИКФС

1. Впервые получена квазикристаллическая икосаэдрическая фаза в сплаве Al-Pd-Tc.

2. Имеется большой опыт в приготовлении квазикристаллических пленочных образцов системах Al-Cu-Fe и Al-Pd-Re методом послойного ионно-плазменного напыления.

3. Разработан способ получения квазикристаллических порошков и спеченных изделий из них системы Al-Cu-Fe (имеется патент № 3.2003118659 от 19.07.04).

4. Проведены исследования процесса начальной стадии окисления поверхности иттрия, циркония, лантана, гафния, бария и квазикристалла Al-Cu-Fe методами ФЭС и СХПЭЭ.

5. Выполнены исследования электронной структуры квазикристаллических систем Al-Cu-Fe, Zr-Pt.

6. Измерены спектры характеристических потерь энергии для чистой поверхности образца квазикристаллической системы Al-Cu-Fe.

7. Проведены исследования монокристаллов системы La1-xSrxMnO3 методом фотоэлектронной спектроскопии с угловым разрешением. Были исследованы монокристаллы c x = 0.175 выращенные в различных условиях: в аргоне и на воздухе. Обнаруженные различия в фотоэлектронных спектрах валентной зоны соответствуют большему числу носителей в монокристаллах La0.875Sr0.175MnO3, выращенных на воздухе. Было обнаружено также, что угловая зависимость обнаруженной ранее особенности, находящейся при энергии связи ~2.5 эВ, существенно более ярко выражена на кристаллах с x = 0.125, чем на кристаллах с большей концентрацией стронция.

8. Совместно с Институтом спектроскопии РАН исследованы оптические свойства тонких (толщиной менее 0.3 мкм) пленок AlCuFe и AlPdRe на подложках в средней и дальней инфракрасной области методами спектроскопии отражения и пропускания.

9. Совместно с МИФИ(ГУ) с помощью EXAFS- и XANES- спектроскопии проведены исследования локальной структуры порошковых образцов квазикристалла Al65Cu20Fe15 в широком интервале температур 10-300 К . Обнаружены различия структуры кластеров, имеющих в центре ионы меди и железа. Проведен количественный анализ спектров, позволивший определить межатомные расстояния, координационные числа и факторы Дебая-Валлера, первой и второй координационных сфер окружения ионов меди и первой координационной сферы окружения ионов железа.

10. Совместно с ВИАМ приготовлены композитные материалы на основе алюминиевой матрицы с нановключениями квазикристаллического Al-Fe-Cu разной дисперсности.

11. Совместно с МИСиС проведены исследования трибологических свойств квазикристаллических спеченных, пленочных образцов и композитных материалов на основе алюминиевой матрицы с нановключениями квазикристаллического Al-Cu-Fe.

12. Совместно с ИК РАН проведены исследования эффекта Мессбауэра квазикристаллических порошков разной дисперсности. Результаты анализа указывают на зависимость параметров сверхтонкого взаимодействия от степени дисперсности образцов. В Мессбауэрских спектрах выделены компоненты, отвечающие атомам железа в поверхностном слое и в объеме наночастиц.

Лаборатория ЛИКФС активно занимается исследованием и внедрением квазикристаллических материалов. Уникальные свойства квазикристаллов, в первую очередь, сочетание повышенной твердости, низкого коэффициента трения, повышенной коррозионной стойкости и низкой поверхностной энергии с термической стабильностью, а также другие специальные свойства, делают их перспективными для применения в различных областях новейшей техники. Перспективность применений квазикристаллов обусловлена возможностью их использования в качестве армирующих наполнителей при создании новых композитных материалов на основе легких сплавов; антифрикционных покрытий в сухих парах трения для подшипников скольжения, работающих при повышенных температурах; антикоррозионных, антиприхватывающих и теплозащитных покрытий; элементов селективных поглотителей солнечной энергии.

Уникальное оборудование
Станция фотоэлектронной спектроскопии

Обычное оборудование
Рентгеновский дифрактометр D8 ADVANCE фирмы Bruker AXS
Рентгенофлуоресцентный спектрометр S4 Pioneer фирмы Bruker AXS

Уникальные методики
Спектроскопия характеристических потерь энергий электронов (СХПЭЭ) в геометрии на отражение. В методе СХПЭЭ измеряются коллективные возбуждения электронной подсистемы твердого тела и переходы электронов с занятых состояний в свободные. Данные СХПЭЭ хорошо дополняют данные по электронной структуре, полученные методом ФЭС. Используется первичный электронный пучок с энергиями 50 - 2000 эВ, энергетическое разрешение составляет около 0,7 эВ и не зависит от энергии.
Фотоэлектронная спектроскопия (ФЭС) - это измерение энергетического распределения фотоэлектронов, вышедших из исследуемого твердого тела при облучение его монохроматическими фотонами. ФЭ спектры отражают ( с точностью до матричных элементов возбуждения) плотность занятых электронных состояний исследуемого вещества. Используемый диапазон энергий фотонов 4 - 100 эВ - позволяет исследовать валентную зону и неглубоко-лежащие остовные уровни. Метод ФЭС - это поверхностно-чувствительный метод, большой вклад в измеряемые спектры вносят поверхностный электронные состояния. В данном случае измеряются интегрированные по углам ФЭ спектры, что связано с относительно малым световым потоком из малого накопителя электронов. Особенностью данной станции ФЭС является возможность измерения спектров при энергиях фотонов 10 - 20 эВ, практически не используемых на большинстве зарубежных станций ФЭС. Реализуемый интервал энергии монохроматора : 4 - 100 эВ Размер пучка- 2х3,5 м.

Научные связи
MAX-Lab, Лунд, Швеция
ВНИИНМ им. Бочвара, Москва, Россия
МГУ, Москва, Россия
МИСиС, Москва, Россия
МИФИ, Москва, Россия
МФТИ, Москва, Россия
Российско-германская лаборатория BESSY, Берлин, Германия
ФГУП «ВИАМ», Москва, Россия
ФЭИ, Обнинск, Россия
ЦНИИКМ ”Прометей”, Санкт-Петербург, Россия

Наиболее значимые публикации
Название: Исследование начальной стадии окисления иттрия методом спектроскопии характеристических потерь энергий электронов.
Автор(ы): М.Н.Михеева, В.Г.Назин, А.С. Кипароидзе
Название издания: ФТТ
Том: 45
Номер: 7
Год выпуска: 2003
Страницы: 1329 - 1332

Название: Исследование начальной стадии процесса окисления лантана методом спектроскопии характеристических потерь энергий электронов.
Автор(ы): М.Н.Михеева, В.Г.Назин
Название издания: ФТТ
Том: 48
Номер: 7
Год выпуска: 2006
Страницы: 1153 - 1156

Название: Исследования процесса окисления циркония методами фотоэлектронной спектроскопии и спектроскопии характеристических потерь энергии электронов.
Автор(ы): М.Н.Михеева, В.Г.Назин, М.Ю.Кузнецов, Е.Г.Максимов, М.В. Магницкая С.С.Василевский
Название издания: ЖЭТФ
Том: 129
Номер: 3
Год выпуска: 2006
Страницы: 517 - 532

Название: Термодинамические и кинетические свойства икосаэдрической квазикристаллическая фазы системы Al-Pd-Tc.
Автор(ы): М.Н.Михеева, Г.Х.Панова, А.А.Теплов, М.Р.Хлопкин, Н.А.Черноплеков, А.А.Шиков
Название издания: ФТТ
Том: 42
Номер: 12
Год выпуска: 2000
Страницы: 2113 - 2119

Название: Электронографические и электронно-микроскопические исследования квазикристаллических тонких пленок Al-Cu-Fe, приготовленных методом ионно-плазменного распыления.
Автор(ы): Д.C. Шайтура, А.Г. Домантовский, А.А. Теплов, Е.Д. Ольшанский
Название издания: Поверхность. Рентгеновские, синхротронные и нейтронные исследования
Том:
Номер: 6
Год выпуска: 2002
Страницы: 79 - 83

Контактная информация
Телефон +7 495 196-95-21

Индекс 123182
Адрес г. Москва, пл. Академика Курчатова, д.1.

Страница научной группы в интернете
http://www.isssph.kiae.ru/docs/opm/likfs/index.html

Источник: Нанотехнологическое сообщество "Нанометр"