Создан синхротрон для молекул размером с тарелку

 


Обычные синхротроны разгоняют заряженные частицы с помощью электрического поля. Эти частицы движутся по круговым орбитам внутри кольцевой вакуумной камеры. Такие устройства используются для работы как с электронами, так и, например, с ядрами свинца. Однако они совершенно непригодны для работы с молекулами, заряд которых нейтрален – отклоняющее магнитное поле на них просто не действует.


Цинтия Хайнер решила отказаться от магнетизма и для разгона использовать меняющееся электрическое поле. Учёные использовали явление поляризации нейтральных молекул в пространстве. При этом одна часть молекулы становится заряженной отрицательно, а противоположная – положительно. В результате у частицы появляется электромагнитное поле, на которое можно воздействовать с помощью внешнего поля.


Работая с первой версией такого синхротрона, созданной ещё шесть лет назад, исследователи столкнулись с проблемой: частицы "расплывались" по всему сечению внутри кольца. Чтобы сформировать чёткий пучок частиц, экспериментаторы немного модифицировали свой ускоритель.


Было решено разделить синхротрон на две С-образные части. Когда молекулы пролетают через промежуток между этими частями, происходит регулировка их скорости (сначала замедление, после ускорение до приблизительно одинакового значения), благодаря чему молекулы перемещаются в кольце с постоянной скоростью. По словам исследователей, это позволяет сохранить частицы в пучке диаметром 3 миллиметра неопределённо долгое время.


Во время движения в кольце скорость молекул невелика – для аммиака всего 87 метров в секунду. Это очень мало по сравнению с околосветовыми величинами, до которых разгоняют частицы в обычных ускорителях. Однако этой величины вполне хватает химикам для исследования столкновений молекул.


Такая скорость соответствует так называемым холодным молекулам с температурой порядка 0,5 микрокельвин. По словам Даниэля Ноймарка (Daniel Neumark), профессора из Калифорнийского университета в Беркли (University of California, Berkeley), не принимавшего участия в разработке молекулярного синхротрона, удары молекул при таких температурах описываются как столкновения квантовых волн и представляют большой интерес для современной науки.


Источник: MEMBRANA.RU